
The semantics of modality
Day 1: Introduction to truth-conditional semantics

Andrés Pablo Salanova
kaitire@uottawa.ca

I Escuela de Lingüı́stica de Buenos Aires

15-19 February 2016

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 1 / 30



Sentence meaning as truth conditions

What does a sentence mean?

What is it to know the meaning of sentences such as the following?

(1) Snow is white.

(2) The acceleration of gravity at the surface of the Earth is 9,81 km/s.

(3) Ana looks happy.

One possibility, due to polish logician Alfred Tarski (1901-1983), is that
knowing the meaning of these is equivalent to knowing under what conditions
they are true.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 2 / 30



Sentence meaning as truth conditions

Meaning as truth conditions

In Tarski’s formulation:

(4) The sentence Snow is white is true iff snow is white.

In the notation that we’ll be using here:

(5) JSnow is whiteK = 1 iff snow is white

I may or may not know whether a particular statement is true or false. But if I
know the meaning of a sentence I know what it takes for it to be true.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 3 / 30



Sentence meaning as truth conditions

Compositionality

We’ll start from this meaning for sentences, and work our way down to words
in a compositional way. That is to say:

(6) Principle of compositionality: the meaning of a sentence is derived in
a regular way from the meaning of its parts.

(7) Semantics tracks syntax: the hierarchical structure produced by
syntax is the input to semantic interpretation.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 4 / 30



Sentence meaning as truth conditions

Predication

A fundamental insight regarding the intepretation of simple sentences such as
Caesar conquered Gaul is that they may be immediately split into two parts.
One, complete unto itself, refers to an entity in the world. The other,
“unsaturated”, refers to a property.
This insight, formulated in this way by Frege but traceable to Aristotle,
divides linguistic expressions into at least two types: arguments and functions.
Functions are inherently unsaturated, and there will be one type of argument
that serves to saturate them.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 5 / 30



Sentence meaning as truth conditions

The meaning of a predicate

In other words:

(8) Jconquered GaulK = a function of x such that Jx conquered GaulK = 1
iff x conquered Gaul.

The lack of saturation can be “read off” from the fact that there is an open
variable x in this expression’s denotation.
Before we go any further, we need to decide what type of entity goes in x.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 6 / 30



Sentence meaning as truth conditions

Entities

Following Richard Montague (1930-71), we admit one basic semantic type in
addition to the semantic type that characterizes the meaning of sentences:
entities. Entities are objects or individuals in the world. The simplest
entity-denoting expression is a proper noun:

(9) JCaesarK = Caesar

Caesar here is the individual called Caesar, i.e., him:

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 7 / 30



Sentence meaning as truth conditions

Basic semantic types

We thus have two basic semantic types in our ontology, entities and truth
values. Until we begin discussing tense and modality, these two types are all
we’ll use to represent the meaning of linguistic expressions.

(10) Basic semantic types:

Entities, represented as e

Truth values, represented as t

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 8 / 30



Sentence meaning as truth conditions

Complex semantic types

How about the predicate “conquered Gaul”?
As we saw earlier, unsaturated expressions are treated as functions. This
might come to mind:

(11) f (x) =
{

1 iff x conquered Gaul
0 otherwise

The domain of this function is the set of entities, and the range is the set of
truth values. In fact, one way to represent a function is as a set of ordered
pairs representing mappings between the domain and the range, < D,R >.
So our function exemplifies our first complex semantic type:

(12) Complex semantic types:

Functions mapping individuals to truth values, < e, t >

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 9 / 30



Sentence meaning as truth conditions

An example

Suppose we live in a world where only three individuals exist: Caesar,
Augustus, Nero.
We can fully specify our function f with respect to the individuals in this
world. It will be like this, in a slightly different notation:

(13) f (x) =


Caesar → 1
Augustus → 0
Nero → 0

In our ordered pair notation, the function is a set:

(14) f = {< Caesar, 1 >,< Augustus, 0 >,< Nero, 0 >}

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 10 / 30



Sentence meaning as truth conditions

Functions and sets

Any function mapping entities to a truth value has a special relation to sets.
Take for example:

(15) f (x) =
{

1 iff x is a woman
0 otherwise

Another way to say this is that the function returns 1 if x belongs to the set of
women, i.e.:

(16) f (x) =
{

1 iff x ∈ W
0 otherwise

where W is the set containing all women in the world

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 11 / 30



Sentence meaning as truth conditions

Characteristic function

We call a function such as (16) the characteristic function of the set W.
Our predicates so far are characteristic functions, and therefore they can also
be thought of as sets.
Consider the following sentences:

(17) Chantal is a woman.

(18) Some candidates are women.

(19) Every guest is a woman.

We will not deal with quantified noun phrases in this course, but I want to
appeal to your intuition that these expressions all relate individuals or sets to
other sets, in the following way:

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 12 / 30



Sentence meaning as truth conditions

Set membership

Chantal is a woman.
a = Chantal
W = {x : x is a woman}

W

a

a ∈ W
or

W(a) = 1

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 13 / 30



Sentence meaning as truth conditions

Non-empty intersection

Some candidates are women.
C = {x : x is a candidate}
W = {x : x is a woman}

W C

C ∩W 6= ∅
or

∃x : C(x) = 1 ∧W(x) = 1

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 14 / 30



Sentence meaning as truth conditions

Subset relation

Every guest is a woman.
G = {x : x is a guest}
W = {x : x is a woman}

W

G

G ⊆ W
or

∀x : G(x) = 1→ W(x) = 1

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 15 / 30



Sentence meaning as truth conditions

Functional application

So, going back to the idea that predicates are functions of type < e, t >,
sentences are of type t, and proper nouns are of type e, to work out the
semantic composition of the sentence Caesar conquered Gaul, we need to
define a rule of composition:

(20) Functional application: if a node α has daughters β of type < D,R >
and γ of type D, JαK will be of type R, and have the meaning
JβK(JγK).

What is essential here is that the types fit, as an argument-function pair: one
type is the type of the other.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 16 / 30



Sentence meaning as truth conditions

Functional application

So:

(21)

u

wwwww
v

St

NPe

Caesar

VP<e,t>

conquered Gaul

}

�����
~

= Jconquered GaulK(JCaesarK)

In terms of our set notation, in fact, we can define functional application as
follows:

(22) Functional application: if a node α has daughters β of type < D,R >
and γ of type D, JαK will be of type R, and have the meaning
JγK ∈ JβK.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 17 / 30



Sentence meaning as truth conditions

Lambda notation for functions

Instead of the f or set notation that we introduced informally above, we will
represent functions using the λ-notation developed by Alonzo Church:

(23) Jconquered GaulK = λx.1↔ x conquered Gaul

That is, the function that returns 1 iff it is true that x conquered Gaul. For
short:

(24) Jconquered GaulK = λx.x conquered Gaul

λx is a binder in this formula: all open instances of x are bound by it and will
be replaced by a constant when the function takes that constant as an
argument. That operation is called lambda conversion, and you can practice it
extensively with the Lambda calculator.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 18 / 30



Sentence meaning as truth conditions

Lambda conversion

How we derive the meaning of the following?

(25) Caesar conquered Gaul.

Functional application:
JCaesar conquered GaulK = Jconquered GaulK(JCaesarK)

Denotation of Caesar: JCaesarK = Caesar

Denotation of conquered Gaul:
Jconquered GaulK = λx.1↔ x conquered Gaul

Substitution of denotations
Jconquered GaulK(JCaesarK) = [λx.x conquered Gaul](Caesar)

Lambda-conversion:
[λx.x conquered Gaul](Caesar) = 1↔ Caesar conquered Gaul

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 19 / 30



Sentence meaning as truth conditions

Lambda conversion

How we derive the meaning of the following?

(26) Caesar conquered Gaul.

Functional application:
JCaesar conquered GaulK = Jconquered GaulK(JCaesarK)

Denotation of Caesar: JCaesarK = Caesar

Denotation of conquered Gaul:
Jconquered GaulK = λx.1↔ x conquered Gaul

Substitution of denotations
Jconquered GaulK(JCaesarK) = [λx.x conquered Gaul](Caesar)

Lambda-conversion:
[λx.x conquered Gaul](Caesar) = 1↔ Caesar conquered Gaul

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 19 / 30



Sentence meaning as truth conditions

Lambda conversion

How we derive the meaning of the following?

(27) Caesar conquered Gaul.

Functional application:
JCaesar conquered GaulK = Jconquered GaulK(JCaesarK)

Denotation of Caesar: JCaesarK = Caesar

Denotation of conquered Gaul:
Jconquered GaulK = λx.1↔ x conquered Gaul

Substitution of denotations
Jconquered GaulK(JCaesarK) = [λx.x conquered Gaul](Caesar)

Lambda-conversion:
[λx.x conquered Gaul](Caesar) = 1↔ Caesar conquered Gaul

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 19 / 30



Sentence meaning as truth conditions

Lambda conversion

How we derive the meaning of the following?

(28) Caesar conquered Gaul.

Functional application:
JCaesar conquered GaulK = Jconquered GaulK(JCaesarK)

Denotation of Caesar: JCaesarK = Caesar

Denotation of conquered Gaul:
Jconquered GaulK = λx.1↔ x conquered Gaul

Substitution of denotations
Jconquered GaulK(JCaesarK) = [λx.x conquered Gaul](Caesar)

Lambda-conversion:
[λx.x conquered Gaul](Caesar) = 1↔ Caesar conquered Gaul

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 19 / 30



Sentence meaning as truth conditions

Lambda conversion

How we derive the meaning of the following?

(29) Caesar conquered Gaul.

Functional application:
JCaesar conquered GaulK = Jconquered GaulK(JCaesarK)

Denotation of Caesar: JCaesarK = Caesar

Denotation of conquered Gaul:
Jconquered GaulK = λx.1↔ x conquered Gaul

Substitution of denotations
Jconquered GaulK(JCaesarK) = [λx.x conquered Gaul](Caesar)

Lambda-conversion:
[λx.x conquered Gaul](Caesar) = 1↔ Caesar conquered Gaul

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 19 / 30



Sentence meaning as truth conditions

Lambda conversion

How we derive the meaning of the following?

(30) Caesar conquered Gaul.

Functional application:
JCaesar conquered GaulK = Jconquered GaulK(JCaesarK)

Denotation of Caesar: JCaesarK = Caesar

Denotation of conquered Gaul:
Jconquered GaulK = λx.1↔ x conquered Gaul

Substitution of denotations
Jconquered GaulK(JCaesarK) = [λx.x conquered Gaul](Caesar)

Lambda-conversion:
[λx.x conquered Gaul](Caesar) = 1↔ Caesar conquered Gaul

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 19 / 30



Sentence meaning as truth conditions

Two-place predicates

Caesar conquered Gaul is in fact a transitive verb, but we’ve been treating it
as a simple predicate for simplicity. But of course we want to derive the
semantics of conquered Gaul from conquered and Gaul
The type of a two-place verb has to contain two e arguments. Our syntax is
binary branching, so:

The type of see is < e, < e, t >>.

The conversion of “flat argument structures” such as << e, ..., en >, t > to
“layered” structures such as < e, < e, ... < en, t > ... >> is called
Schönfinkelization.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 20 / 30



Sentence meaning as truth conditions

Two-place predicates

We can assume that Gaul is, like Caesar an entity. The only truly new thing in
the following tree is the semantic type of the V:u

wwwwwwwww
v

St

NPe

Caesar

VP<e,t>

V<e<e,t>>

conquered

NPe

Gaul

}

���������
~

= [Jconquered(JGaulK)K] (JCaesarK)

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 21 / 30



Sentence meaning as truth conditions

The reference of pronouns

Now take the following:

(31) He conquered Gaul.

The truth conditions of this sentence clearly depend on the reference of he.

(32) JHe conquered GaulK = 1↔ whoever he refers to conquered Gaul

Words such as he take their reference from the linguistic or extralinguistic
context.
We’ll deal with this by relativizing our denotation function to context:

(33) JXKc = the denotation of X in context c.

For example, in a particular context:

(34) JheKc = Caesar

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 22 / 30



Sentence meaning as truth conditions

Assignment functions

We’ll be more precise about this. Since many things in a single utterance may
depend on context, we’ll assign a different index to each of these:

(35) He thinks she conquered Gaul.

Our context will be reduced to a contextual assignment function, gc, which
takes each index to its referent:

(36) gc =


1 → John
2 → Mary
...

So, given this particular definition of gc:

(37) JHeKgc = John

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 23 / 30



Sentence meaning as truth conditions

Interpretation of bound pronouns

There are cases when these variable-reference elements are bound and their
reference becomes fixed intra-sententially. Resumptive pronouns are one such
case (but examples are complicated). PRO and traces are better examples:

(38) Caesar wants PRO to conquer Gaul.

(39) the Roman dictator who t conquered Gaul

We’ll fully work out the relative clause example. But first we need to
understand adjectival modification and lambda abstraction.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 24 / 30



Sentence meaning as truth conditions

Predicate modification

Take the following:

(40) Caesar was a short man.

Informally, this has the meaning that Caesar is both tall and a man. Both tall
and a man are predicates of type < e, t >. So how can we put this together?

t

e

Caesar

?

< e, t >

tall

< e, t >

man
(Yes, I’m assuming both was and a to be semantically vacuous.)

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 25 / 30



Sentence meaning as truth conditions

Predicate modification

There is no context for functional application.
We need a new rule:

(41) Predicate modification: if a node α has daughters β and γ both of type
< e, t >, JαK will be of type < e, t >, and have the meaning JβK∧ JγK.

The meaning is just the same as that of coordinated predicates.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 26 / 30



Sentence meaning as truth conditions

Relative clause meaning

Take the following:

(42) Caesar was a dictator who conquered Gaul.

Like with adjectival modification, we’ll assume that the meaning of this is:

(43) JCaesar was a dictator who conquered GaulK =
JCaesar was a dictatorK ∧ JCaesar conquered GaulK

So:
t

e

Caesar

< e, t >

< e, t >

dictator

< e, t >

who conquered Gaul
Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 27 / 30



Sentence meaning as truth conditions

Relative clause meaning

A relative clause creates a function out of any complete sentence.
Syntactically, in better-known languages this is usually done by movement of
a relative pronoun:

whoi

ti
conquered Gaul

But also:

whoi

Cleopatra
conquered ti

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 28 / 30



Sentence meaning as truth conditions

Relative clause meaning

A relative clause creates a function out of any complete sentence.
Syntactically, in better-known languages this is usually done by movement of
a relative pronoun:

whoi

ti
conquered Gaul

But also:

whoi

Cleopatra
conquered ti

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 28 / 30



Sentence meaning as truth conditions

Relative clause meaning

A relative clause creates a function out of any complete sentence.
Syntactically, in better-known languages this is usually done by movement of
a relative pronoun:

whoi

ti
conquered Gaul

But also:

whoi

Cleopatra
conquered ti

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 28 / 30



Sentence meaning as truth conditions

Relative clause meaning

So we want a way to turn a sentence (of type t) again into a predicate:
< e, t >

whoi t

ti < e, t >

conquered Gaul

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 29 / 30



Sentence meaning as truth conditions

Lambda abstraction

We will deal with this by treating the trace as a pronoun, whose denotation is
given by an assignment function:

(44) JtKgc = gc()

But how do we get this trace to act as a variable?

This is achieved by means of the syncategorematic rule of lambda abstraction.

(45) Lambda abstraction
Given two sister nodes JαKg and an index a, the denotation of the
node dominating those two sisters is

λx.JαKg/a→x

where g/a→ x is the assignment function identical to g except for
taking index a to x.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 30 / 30



Sentence meaning as truth conditions

Lambda abstraction

We will deal with this by treating the trace as a pronoun, whose denotation is
given by an assignment function:

(46) JtKgc = gc()

But how do we get this trace to act as a variable?
This is achieved by means of the syncategorematic rule of lambda abstraction.

(47) Lambda abstraction
Given two sister nodes JαKg and an index a, the denotation of the
node dominating those two sisters is

λx.JαKg/a→x

where g/a→ x is the assignment function identical to g except for
taking index a to x.

Andrés Pablo Salanova (Ottawa) The semantics of modality (I ELBA) 15-19 February 2016 30 / 30


	Day 1: An extensional semantics
	Sentence meaning as truth conditions

