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O_bjetivos de esta clase

e |Introalaactividad cerebral
e Introalaresonancia magnética funcional

e Paperde Huth 2016



Viendo el cerebro

Ya sabemos como se representan las palabras en la computadora

:Y enelcerebro?

:Como estudiamos como se representan?



Breve intro a neuroimagenes



Breve intro a neuroimagenes

:De qué hablamos cuando hablamos de neuroimagenes?

MRI: resonancia magnética

fMRI: resonancia magnética funcional

DTI: diffusion tensor imaging

fNIRS: Functional near-infrared spectroscopy
PET: Tomografia por emision de positrones
EEG: Electroencefalografia

MEG: Magnetoencefalografia

iEEG: Electroencefalografia Intracraneal

LFP: Potenciales de campo local

Single-Cell Recordings
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En resumen
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Medida indirecta de la actividad neuronal
Baja resolucién temporal
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;Y todo esto para que?



Estudios clasicos de neuroimagenes
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Alineamiento de embeddings con neuroimagenes
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Se analizan las relaciones
entre variables continuas
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Embeddings

8 12 -9 3

-1 11 9 4

11

3

4

21 ..

Estimulos

Pall

Pal2

Pal3

PalN

Actividad cerebral

7

Regresion Lineal:

Act~B,d, +B,d,+...8.d,

Qué dimensiones modelan mejor la
activacion?

Qué informacion codifican esas
dimensiones?

Qué informacion codifican esos
voxeles?

Tipos de palabras?

Qué capas de los modelos?
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Predicting Human Brain Activity
Associated with the Meanings
of Nouns

Tom M. Mitchell,™* Svetlana V. Shinkareva,? Andrew Carlson,* Kai-Min Chang,>*
Vicente L. Malave,” Robert A. Mason,> Marcel Adam Just®

The question of how the human brain represents conceptual knowledge has been debated in
many scientific fields. Brain imaging studies have shown that different spatial patterns of neural
activation are associated with thinking about different semantic categories of pictures and

words (for ple, tools, buildings, and animals). We present a computational model that predicts
the functional magnetic resonance imaging (fMRI) neural activation associated with words for which
fMRI data are not yet available. This model is trained with a combination of data from a trillion-word
text corpus and observed fMRI data associated with viewing several dozen concrete nouns. Once
trained, the model predicts fMRI activation for thousands of other concrete nouns in the text corpus,
with highly significant accuracies over the 60 nouns for which we currently have fMRI data.

Evaluating word embeddings with fMRI and eye-tracking

Anders Sggaard
University of Copenhagen
soegaard@hum ku.dk

Abstract

The workshop CfP assumes that down-
stream evaluation of word embeddings is
impractical, and that a valid evaluation
metric for pairs of word embeddings can
be found. I argue below that if so, the
only meaningful evaluation procedure is
comparison with measures of human word
g in the wild. Such evaluation is
non-trivial, but I present a practical proce-
dure here, evaluating word embeddings as
features in a multi-dimensional regression
model predicting brain imaging or eye
tracking word-level aggregate statisti

Natural speech reveals the semantic maps that tile human
cerebral cortex

Alexander G. Huth?, Wendy A. de Heer®, Thomas L. Griffiths®, Frédéric E. Theunissen®®,
and Jack L. Gallant2®

2Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
bDepartment of Psychology. University of Califomnia, Berkeley, CA 94720, USA

Abstract
The meaning of language is represented in regions of the cerebral cortex collectively known as the
“semantic system”. However, little of the semantic system has been mapped comprehensively, and

the semantic selectivity of most regions is unknown. Here we systematically map semantic

y across the cortex using voxel-wise modeling of fMRI data collected while subjects
listened to hours of narrative stories. We show that the semantic system is organized into intricate
patterns that appear consistent across individuals. We then use a novel generative model to create a
detailed semantic atlas. Our results suggest that most areas within the semantic system represent
information about specific semantic domains. or groups of related concepts. and our atlas shows
which domains are represented in each area. This study demonstrates that data-driven methods

commonplace in studies of human neuroanatomy and functional connectivity—provide a powerful

and efficient means for mapping functional representations in the brain.

Decoding the Neural Representation of Story
Meanings across Languages

Morteza Dehghani '* Reihane Boghrati,‘ Kingson Man,' Joe Hoover,'
Sarah I. Gimbel,' Ashish Vaswani,? Jason D. Zevin,'
Mary Helen Immordino-Yang,' Andrew S. Gordon,'
Antonio Damasio,I and Jonas T. Kaplan|

"University of Southern California, Los Angeles, CA
2Google Brain, Mountain View, California
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CogniVal: A Framework for Cognitive Word Embedding Evaluation

Nora Hollenstein', Antonio de la Torre', Nicolas Langer?, Ce Zhang'

! Department of Computer Science, ETH Zurich
{noraho, antonide, ce.zhang}@ethz.ch
2 Department of Psychology, University of Zurich

n.langer@psychologie.uzh.ch

Abstract

An interesting method of evaluating word rep-
resentations is by how much they reflect the
semantic representations in the human brain.
However, most. if not all, previous works only
focus on small datasets and a single modal-
ity. In this paper, we present the first multi-
modal framework for evaluating English word
representations hased on cognitive lexical se-
mantics. Six types of word embeddings are
evaluated by fitting them to 15 datasets of eye-
wacking, EEG and fMRI signals recorded dur-
ing language processing. To achieve a global
score over all evaluation hypotheses, we ap-
ply statistical significance testing accounting
for the multiple comparisons problem. This
framework is easily extensible and available
to include other intrinsic and extrinsic evalu-
ation methods. We find strong correlations in
the results between cognitive datasets, across
recording modalities and to their performance
on extrinsic NLP tasks.

1. Define evaluation combinations

Eye-tracking.

R

2. Fit regression model for each combination

¥\§\t§

3 Multiple hypotheses testing

H, H,

H,

Samira Abnar L

abnar, 1.beinborn}@uva.

Blackbox meets blackbox: Representational Similarity and Stability
Analysis of Neural Language Models and Brains

Beinborn  Rochelle Choenni

Institute for Logic, Language and Computation
University of Amsterdam

Willem Zuidema

idema@uva.nl

Robust Evaluation of Language—Brain Encoding
Experiments

Lisa Beinborn, Samira Abnar, Rochelle Choenni

Institute for Logic, Language and Computation
University of Amsterdam
1.beinborn@uva.nl, s.abnar@uva.nl, rochelle.choenni@student.uva.nl

Abstract. Language-brain encoding experiments evaluate the ability of
language models to predict brain responses elicited by language stimuli.
The evaluation scenarios for this task have not yet been standardized
which makes it difficult to compare and interpret results. We perform a
series of evaluation experiments with a consistent encoding setup and
compute the results for multiple fIMRI datasets. In addition, we test the
sensitivity of the evaluation measures to randomized data and analyze
the effect of voxel selection methods. Our experimental framework is

publicly awailable to make modelling dec
support reproducibility for future comparisons.

ons more transparent and

Interpreting and improving natural-language
processing (in machines) with natural
language-processing (in the brain)

Mariya Toneva Leila Wehbe
Neuroscience Institute Neuroscience Institute
Department of Machine Leaming Department of Machine Learning
Carnegie Mellon University Camegie Mellon University
mariya@cmu. edu Iwehbe@cmy . edu

Abstract

Neural networks models for NLP are typically implemented without the explicit
encoding of language rules and yet they are able to break one performance record
after another. This has generated a lot of research interest in interpreting the
representations learned by these networks. We propase here a novel interpretation
approach that relies on the only processing system we have that does understand
language: the human brain. We use brain imaging recordings of subjects reading
complex natural text to interpret word and sequence embeddings from 4 recent
NLP models - ELMo, BERT and Transformer-XL. We study how their
representations differ across layer depth, context length, and attention type. Our
results reveal differences in the c Jated these models
Further, in the transformer models, we find an interaction between layer depth and
context length, and between layer depth and attention type. We finally hypothesize
that altering BERT to better align with brain recordings would enable it to also
better understand language. Probing the altered BERT using syntactic NLP tasks
reveals that the model with increased brain-alignment outperforms the original
model. Cognitive neuroscientists have already begun using NLP networks o study
the brain, and this work closes the loop to allow the interaction between NLP and
cognitive neuroscience (o be a true cross-pollination.
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Long-range and hierarchical language predictions

in brains and algorithms

Charlotte Caucheteux'

*, Alexandre Gramfort*, and Jean-Rémi King'*

2021

 Facebook Al Research, Pasis, France; *Universaé Paris-Sacky, kia, CEA, Palaiseau, France; *Ecole normale supénieure, PSL Unversty, ONRS, Pars, France

Deep learning has recently made remarkable progress in natural lan-
guage processing. Yet, the resulting algorithms remain far from com-
peting with the language abilities ofthe human brain. Predictive cod-
ing theory offers a potential explanation to this discrepancy: while
deep language algorithms are optimized to predict adjacent words,
the human brain would be tuned to make long-range and hierarchical
predictions. To test this hypothesis, we analyze the fMRI brain sig-
nals of 304 subjects each listening to ~70min of short stories. After
confirming that the activations of deep language algorithms linearly
map onto those of the brain, we show that enhancing these mod-
els with long-range forecast representations improves their brain-
mapping. The results further reveal a hierarchy of predictions in
the brain,
and more distant representations than the temporal cortices. Over-
all, this study strengthens predictive coding theory and suggests a
critical role of long-range and hierarchical predictions in natural lan-
guage processing.

Here, we address these issues by analyzing the brain signals
of 304 subjects listening to short stories, while their brain activ-
ity was recorded with IMRI (32). First. we confirm that deep
language algorithms linearly map onto brain activity (6. 8. 33
Then, we show that adding long-range and hicrarchical pr

dictions improves such mapping. After confirming that the
activations of deep language algorithms linearly map onto brain
6. 8, 33). we show that enbancing these models with
long-range and hierarchical predictions improves their brain
mapping. Critically, and in line with predictive coding theory
our results reveal a hierarchical organization of language pre-
diction in the cortex, in which the highest stages forecast (i)
the most distant and (i) the most abstract representations

activit

Results

Deep language models map onto brain activity.
tify the similarity between deep language models and the brain,

First, we quan-

Brains and algorithms partially converge in natural

language processing

Charlotte Caucheteux'2® & Jean-Rémi King® 3=

Deep leaming algorithms trained to predict masked words from large amount of text have
recently been shown to generate activations similar to those of the human brain. However,
what drives this similarity remains currently unknown. Here, we systematically compare 2
variety of deep language models to identify the computational principles that lead them to
generate brain-like representations of sentences. Specifically, we analyze the brain responses
to 400 isolated sentences in a large cohort of 102 subjects, each recorded for two hours with

functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). We

2022

then test where and when each of these algorithms maps onto the brain responses. Fing|
we estimate how the architecture, training, and performance of these models independer
account for the generation of brain-like representations. Our analyses reveal two m|
findings. First, the similarity between the algorithms and the brain primarily depends on t

ability to predict words from context. Second, this similarity reveals the rise and maintenar
of perceptual lexical, and compositional representations within each cortical region. Ove

this study shows that modern language algorithms partially converge towards brain-|
solutions, and thus delineates a promising path tounravel the foundations of natural langu:

processing.

OPEN
Shared computational principles for language

processing in humans and deep language models

Ariel Goldstein ©12%, Zaid Zada 4, Eliav Buchnik*®, Mariano Schain?%, Amy Price ©'%, 2 0 2 2
Bobbi Aubrey'*%, Samuel A. Nastase ©'%, Amir Feder?®, Dotan Emanuel®%, Alon Cohen?%,

Aren Jansen*®, Harshvardhan Gazula', Gina Choe'?, Aditi Rao'?, Catherine Kim'?, Colton Casto’,

Lora Fanda®3, Werner Doyle?, Daniel Friedman?, Patricia Dugan?®, Lucia Melloni ©*, Roi Reichart®,
Sasha Devore?, Adeen Flinker?, Liat Hasenfratz', Omer Levy ¢, Avinatan Hassidim?,

Michael Brenner?’, Yossi Matias?, Kenneth A. Norman ', Orrin Devinsky? and Uri Hasson®2

Departing from traditional linguistic models, in deep learning have resulted in a new type of predictive (autoregres-
sive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate
linguistic responses in a given context. In (ﬁe current study, nine participants listened to a 30-min podcast while their brain

were rded using ek hy (ECoG). We provide empirical evidence that the human brain and autore-
gressive DLMs shnu thme fundamental computational principles as they process the same natural narrative: (1) both are

in rd iction before word onset; (2) both match their pi et di to the i
word to calculate post-onset swprm,(3) bothrely on beddings to rep: words in natural contexts. Together,
our findings suggest that autoregressive DLMs provide a new and feasible i fi for studyi

the neural basis of language.




Alineamiento de embeddings con neuroimagenes

NeurlPS2021

Low-Dimensional Structure in the Space of Language Predify: Augmenting deep neural networks with
Representations is Reflected in Brain Responses brain-inspired predictive coding dynamics

Can fMRI reveal the representation of syntactic
structure in the brain?

Aniketh Janardhan Reddy Leila Wehbe
Machine Learning Department Machine Learning Department
Carnegie Mellon University Carnegie Mellon University

ajreddy@cs.cmu.edu lwehbe@cmu. edu

Abstract

While studying s ics in the brain, neuroscientists use two approaches. One is
to identify areas that are 1 with i load. Another is to

find areas that are predicted by the semantic mpm\cnunon of the stimulus words.

However, most studies of syntax have focused only on identifying areas correlated
with syntactic processing load. One possible reason for this discrepancy is that
representing syntactic structure in an embedding space such that it can be used
to model brain activity is a non-trivial computational problem. Another possible
reason is that it is unclear if the low signal-t ise ratio of i ing tools
such as functional Magnetic Resonance Imaging (fMRI) can allow us to reveal
the correlates of complex (and perhaps subtle) syntactic representations. In this
study, we propose novel multi-dimensional features that encode information about
the syntactic structure of sentences. Using these features and fMRI recordings of

participants reading a natural text, we model the brain representation of syntax.

First, we find that our syntactic structure-based features explain additional variance
in the brain activity of various parts of the language system, even after controlling
for complexity metrics that capture processing load. At the same time, we see that
regions well- pmdlclcd by syntactic features are distributed in the language system
and are not di ishable from those p semantics. Our code .md data
will be available at https://github.c i j in_syntactic_|

Richard Antonello Javier Turek
UT Austin Intel Labs
rjantonello@utexas.edu javier.turek@intel.com

Vy Vo Alexander Huth
Intel Labs UT Austin
vy.vo@intel.com huth@cs.utexas.edu
Abstract

How related are the representations learned by neural language models, translation
models, and language tagging tasks? We answer this question by adapting an
encoder-decoder transfer learning method from computer vision to investigate
the structure among 100 different feature spaces extracted from hidden represen-
tations of various networks trained on language tasks. This method reveals a

low-dimensional structure where . models and ion models s hl
interpolate between word embeddings, \ynl.u.llc and semantic tasks, and future
word embeddings. We call this low-di 3 a l 7

tation umluddm ¢ because it encodes the between

needed to process language for a variety of NLP (n;\luml language processing) tasks.
We find that this representation embedding can predict how well each individual
feature space maps to human brain responses to natural language stimuli recorded
using fMRI. Additionally, we find that the principal dimension of this structure can
be used to create a metric which highlights the brain’s natural language processing
hierarchy. This suggests that the embedding captures some part of the brain’s
natural language representation structure.

Bhavin Choksi* Milad Mozafari’ Callum Biggs O'May
CerCo CNRS, UMR 5549 & CerCo CNRS, UMR 5549 & CerCo CNRS
Université de Toulouse IRIT CNRS, UMR 5505 UMR 5549
bhavin.choksi@cnrs.fr milad.mozafari@cnrs.fr
Benjamin Ador Andrea Alamia Rufin VanRullen
CerCo CNRS CerCo CNRS CerCo CNRS. UMR 5549 &
UMR 5549 UMR 5549 ANITI, Université de Toulouse
rufin.vanrullen@cnrs.fr
Abstract

Deep neural networks excel at image classification, but their performance is far
less robust to input perturbations than human perception. In this work we explore
whether this shortcoming may be partly addressed by incorporating brain-inspired
recurrent dynamics in deep cnmnlu\mnal ncmork\ Wc lake inspiration from
a popular fi kin coding”. At each layer of the
hierarchical model, generative feedback * pmdxcu (ie., rcconstmch) the pattern of
activity in the previous layer. The reconstruction errors are used to iteratively update
the network’s i across ti and to optimize the network’s
feedback \\cxghl\ over the natural image dataseta form of unsupervised training.
We show that 1mplcmcnt|ng this slmtcg) into two popular networks, VGG16
and EfficientNetB0, imp: their robus against various corruptions and
adversarial attacks. We hypothesize that other feedforward networks could similarly
benefit from the proposed framework. To promote research in this direction, we
provide an open-sourced PyTorch-based package called Predify. which can be used
to implement and investigate the impacts of the predictive coding dynamics in any
convolutional neural network.




Alineamiento de embeddings con neuroimagenes

Divergences between Language Models and Human Brains

Yuchen Zhou' Emmy Liu' Graham Neubig' Michael J. Tarr' Leila Wehbe '

Abstract

Do machines and humans process language in
similar ways? Recent research has hinted in the
affirmative, finding that brain signals can be effec-
tively predicted using the internal representations
of language models (LMs). Although such results
are thought to reflect shared computational prin-
ciples between LMs and human brains, there are
also clear differences in how LMs and humans rep-
resent and use language. In this work, we system-
atically explore the divergences between human

Behavioral/Cognitive

Voxelwise Encoding Models Show That Cerebellar Language
Representations Are Highly Conceptual

Amanda LeBel,' Shailee Jain,® and Alexander G. Huth??

"Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California 94720, *Department of Neuroscience, University of

and machine language processing by examining
the differences between LM rep ions and
human brain res ses to | as d

p
by Magnetoencephalography (MEG) across two
datasets in which subjects read and listened to nar-
rative stories. Using a data-driven approach, we
identify two domains that are not captured well by
LMs: social/emotional intelligence and physical
commonsense. We then validate these domains
with human behavioral experiments and show that
fine-tuning LMs on these domains can improve
their alignment with human brain responses '.

T Austin, Austin, Texas 78712, and *Department of Computer Science, University of Texas-Austin, Austin, Texas 78712

There is a growing body of research demonstrating that the cerebellum is involved in language understanding. Early theories
assumed that the cerebellum is involved in low-level language processing. However, those theories are at odds with recent
work demonstrating cerebellar activation during cognitive tasks. Using natural language stimuli and an encoding model
framework, we performed an fMRI experiment on 3 men and 2 women, where subjects passively listened to 5 h of natural
language stimuli, which allowed us to analyze language processing in the cerebellum with higher precision than previous
work. We used these data to fit voxelwise encoding models with five different feature spaces that span the hierarchy of lan-
guage processing from acoustic input to high-level conceptual processing. Examining the prediction performance of these
models on separate BOLD data shows that cerebellar responses to language are almost entirely explained by high-level con-
ceptual 1 ge features rather than low-level acoustic or phonemic features. Additionally, we found that the cerebellum has

a higher proportion of voxels that represent social semantic categories, which include “social” and “people” words, and lower
representations of all other semantic categories, including “mental,” “concrete,” and “place” words, than cortex. This suggests
that the cerebellum is representing language at a conceptual level with a preference for social information.
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A natural language fMRI dataset for
voxelwise encoding models

Amanda LeBel(®?, Lauren Wagner?, Shailee Jain?, Aneesh Adhikari-Desai®*, Bhavin Gupta3,
Allyson Morgenthal?, Jerry Tang?, Lixiang Xu?® & Alexander G. Huth®4>

Speech comprehension is a complex process that draws on humans’ abilities to extract lexical
information, parse syntax, and form semantic understanding. These sub-processes have traditionally
been studied using separate neuroimaging experiments that attempt to isolate specific effects of
interest. More recently it has become possible to study all stages of language comprehensionin a
single neuroimaging experiment using narrative natural language stimuli. The resulting data are richly
varied at every level, enabling analyses that can probe everything from spectral representations to
high-level representations of semantic meaning. We provide a dataset containing BOLD fMRI responses
recorded while 8 participants each listened to 27 complete, natural, narrative stories (~6 hours). This
dataset includes pre-processed and raw MRIs, as well as hand-constructed 3D cortical surfaces for each
participant. To address the challenges of analyzing naturalistic data, this dataset is accompanied by a
python library containing basic code for creating voxelwise encoding models. Altogether, this dataset
provides a large and novel resource for understanding speech and language processing in the human
brain.

Scaling laws for language encoding models in fMRI

Richard J. Antonello Aditya R. Vaidya
Department of Computer Science Department of Computer Science
The University of Texas at Austin The University of Texas at Austin

rjantonelloQutexas.edu avaidya@utexas.edu
Alexander G. Huth

Departments of Computer Science and Neuroscience
The University of Texas at Austin
huth@cs.utexas.edu

Abstract

Representations from transformer-based unidirectional language models are known
to be effective at predicting brain responses to natural language. However, most
studies comparing language models to brains have used GPT-2 or similarly sized
language models. Here we tested whether larger open-source models such as those
from the OPT and LLaMA families are better at predicting brain responses recorded
using fMRI. Mirroring scaling results from other contexts, we found that brain
prediction performance scales logarithmically with model size from 125M to 30B
parameter models, with ~15% increased encoding performance as measured by
correlation with a held-out test set across 3 subjects. Similar logarithmic behavior
was observed when scaling the size of the fMRI training set. We also characterized
scaling for acoustic encoding models that use HuBERT, WavLM, and Whisper,
and we found comparable improvements with model size. A noise ceiling analysis
of these large, high-performance encoding models showed that performance is
nearing the theoretical maximum for brain areas such as the precuneus and higher
auditory cortex. These results suggest that increasing scale in both models and data
will yield incredibly effective models of language processing in the brain, enabling
better scientific understanding as well as applications such as decoding.
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Huth et al. (2016)

Dataset de neuroimagenes:

-

\ 2

fMRI 3T

7 sujetos (5M, 2F)

4 horas por sujeto (2 sesiones)
11 caps de podcast (10-15 mins)
€ Train: 10 historias

& Test: 1 historia (2 veces)




Huth et al. (2016)

Dataset de neuroimagenes:
= fMRI3T
-> 7 sujetos (5M, 2F)
-> 4 horas por sujeto (2 sesiones)
-> 11 caps de podcast (10-15 mins)
€ Train: 10 historias
& Test: 1 historia (2 veces)

Construccion de embeddings:
=> Matrix término-término

¢ 10/470flas

€ 985 columnas (pals mas frecuentes)
-> Co-Ocurrencia enventanade 15 pals

=> Agregan 41 dimensiones auditivas



Huth et al. (2016)

Estimacion del modelo: Validacion del modelo:

-> Act ~embedding -> Modelo entrenado prediciendo el capitulo
-> Regularizacion Ridge de test

> Concatenacion de palabras - Performance: pearson correlation entre las

prediccionesy la actividad neuronal



Huth et al. (2016)

Prediction performance (r)
0 005 012 0.18 024 030 0.36 042 048 054 060
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P value (FDR corrected)

Superior
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Explicabilidad:
-=> Andlisis sobre los 10,000
mejores voxeles

-=> PCA sobrelos 985 del modelo

7

4 dimensiones relevantes

=> Mapeo de palabras a estas 4
dimensiones

—> Clustering + labeling manual




Resumen

Hoy vimos:
- Introducciéon a Neuroimagenes
- M/EEG
- fMRI
- Técnicade alineamiento: Regresion lineal sobre embeddings
- Recapitulacion de trabajos de los ultimos anos

- Huthetal. 2016
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